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ANOMALOUS REORGANIZATION FREE ENERGIES IN OPTICAL ELECTRON TRANSFER IN SOLUTION

PAUL DELAHAY

Department of Chemistry, New York University, New York, New York 10003

Autoionization bands are observed in the photoelectron emission

spectroscopy of aqueous solutions of cyanometalate complexes (Mn, Fe, W, Mo),

anions (NO3, ClO4) and cations (Ag+, TI+). Reorganization free energies

for autoionization bands are anomalously low in absolute value (by ca. 1 eV)

in comparison with direct transitions to the continuum. Interpretation is

based on potential energy profiles and model calculations for the

reorganization free energy.

4-
Solutions of certain ions (e.g., Fe(CN)4 ) in various solvents

exhibit two distinct bands for emission of photoelectrons in the solvent vapor

above the solution. The emission bands consist of a plot of the emission

yield (number of collected electrons per incident photon) against photon

energy. The first band is observed at photon energies lower by ca. I eV than

expected from the energetics of electron emission and subsequent

reorganization of nuclear configurations. Conversely, the second band is

observed in the expected range of photon energies. These results will be

interpreted in the present paper by considering emission by autoionization and

direct transition to the continuum.

1. Autoionization in solution

Photoelectron emission by solutions will be interpreted on tie a.;.,s of

potential energy profiles similar to those used in the discussion of thermal

electron transfer [1,2]. The species being photoionized and the resulting

product are denoted, respectively, by D and D regardless of actual ionic

(copyrNPCr/ f
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charges (to simplify notations). The curve U(D-) in Fig. I (left)

represents the variations of the potential energy of the solvated species D-

with a generalized coordinate depending on the nuclear configuration of D-

and the solvent. The reduction of potential energy hypersurfaces to a

two-dimensional representation is discussed in [1,2]. Curve U(D,e-)

pertains to the products of photoionization, namely D and the electron in the

gas phase. The constant potential energy of the electron at infinity in the

gas phase is included in U(D,e-). The minimum of the U(D-) curve corresponds

to the ground state of D-. Conversely, the minimum of the U(D,e-) curve

pertains to the ground state of D and the electron at infinity in the gas phase

(treated as a vacuum). The two minima are separated by the energy gap Uc.

Photoelectron emission into the gas phase results from the vertical

transition AB (Franck-Condon principle) involving the difference in potential

energy UAB - Uc - Ur, where Ur (< 0) is the energy for reorganization of

the solvated species produced by photoionization. The reorganization process is

represented by the segment BC of the U(D,e-) curve. The kinetic energy of the

electron emitted into the gas phase depends on UAB and the photon energy.

Suppose that the excited state De is prepared by the transition AE
ex

requiring the change in potential energy UAE (Fig. 1, right). This transition

satisfies the condition Uc < UAE < UC - Ur. In that case, radiationless

transitions may occur between the discrete levels of De and continuum levels

of (D,e-), and autoionization may occur [3]. The discrete-continuum interaction

* can be interpreted as the result of the intersection [1,2] of the potential energy

curves of Dex and (D,e-) (Fig. 1, right). If there is autoionization,

* photoelectron emission into the gas phase is observed for a change of potential

energy UAE lower than UAB a Uc - Ur. Two distinct emission bands are

observed if UAB and UAE differ sufficiently. Moreover, the reorganization

o,
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energy Ur - U - UAE for the autoionization band is lower in absolute

value than Ur = Uc - UAB for the band for direct transition to the continuum.

Interaction between discrete and continuum levels considered in the preceding

discussion was already invoked in the interpretation of the emission bands of

anthracene mono- and divalent anion radicals in solution [4]. Autoionization was

inferred in that work from the near coincidence bf emission and absorption bands.

The interpretation was not cast in terms of potential energy profiles, and the

reorganization process was not considered. The main points of the present paper

therefore did not appear in [4].

2. Anomalous reorganization free energies

Autoionization is detected in this work from the anomalously low absolute

value of the reorganization free energy R. Basic equations and methods for the

analysis of data were recently reviewed [5]. The value of R is computed from [1,6]

aGm. aGH + aG - R, (1)

where AGm is the free energy for emission; AGH = 4.50 eV on the assumption

of a negligible (*0.1 V) surface potential at the solution-water vapor

interface; AG is the free energy change for the reaction, D-(aq) + H+(aq)

= D(aq) + 1/2H 2 (g). The sum AGH + AG in (1) corresponds to the change of

potential energy Uc in sec. 1. One sets AGm = Et, where Et is the

experimentally determined threshold energy. This equality holds within ca.

*0.2 eV or better [7]. The quantity Et is obtained from a linear plot of

y n vs. E, where Y is the emission yield, E the photon energy, and n = 0.4 or

0.5. The extrapolation method is discussed in [5].

Anomalously low values of JR1 computed from (1) can be identified by

comparison with the results of model calculations [1,8,9]. The quantity R is

equated to the sum of inner- and outer-sphere contributions denoted by R(in)

and R(out), respectively. One has [8],

R(out) - ,s)e 2/2a, (2)op s
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where cop and c are the optical and static dielectric constants of water,

respectively, and a is the radius of the boundary between inner- and

outer-sphere regions. Equation (2) yields approximate results, but this does

not matter for our purpose because of the large difference between normal and

anomalous values of R. It is not necessary for the same reason to calculate

R(in) in most cases. Equation (2) is applied in sec. 3, and another method

for identifying anomalous values of R is discussed in sec. 4.

3. Cyanometalate complexes
2--I

Some cyanometalate complexes undergo autoionization. Thus, Fe(CN)6-

exhibits two distinct emission bands [10], and the values of JRI for the

complexes of Table 1 are anomalously low except for the second bands of

Mn(CN)4- and Fe(CN)4- . In fact, IR1 is amazingly low (0.3 eV) for

W(CN)4-, for instance. The threshold energies in Table 1 were determined

from the emission spectra in [11] by application of the extrapolation method

used in [6,7] and reviewed in [5]. Data on &G are from [12). One has a ;-

0.45 nm [13] for the complexes of Table 1. The corresponding free energy,

R(out) :- -0.9 eV, computed from (2) is higher in absolute value than the

experimental values of RI., except for the second bands of Mn(CN) 4  and

Fe(CN) -. The discrepancy is even greater because R(in) (. -0.38 eV for

Fe(CN)4- [13]) should be taken into account and eq. (2) yields somewhat

low values of IR(out)l [14]. Thus, only the second bands of Mn(CN)4- and

Fe(CN)4- correspond to normal values of R and are assigned, on that basis,

to direct transitions to the continuum. The assignment of the second band of

Fe(CN) " to autoionization in [10] therefore must be revised.

Autoionization occurs in the range of photon energies in which intense

* absorption bands are observed [15,16], as required by the analysis of sec. 1.

I The threshold energies of the autoionization bands of Mn(CN) (4.8 eV)
)6 e

( u

i ______________________________________
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and Fe(CN)4- (5.5 eV) are slightly lower than the photon energies E m ax

4.90 and 5.69 eV [15], respectively, of broad, intense (6max = 31,100 and

24,200 M -1 cm-1) charge transfer absorption bands of these complexes. The
4- 4-

complexes W(CN)8 and Mo(CN) 8  exhibit intense charge transfer bands [16] atma ,06 1 1maxM-

4.98 eV (emax  25,060 M-1 cm-1 ) and 5.17 eV (, = 15,540 M cm-1),

respectively. These values of Emax are lower than the corresponding threshold

energies (by 0.4 eV) and the sums AGH + AG of (1) (by ca. 0.1 eV). This is

surprising, and it is possible that these complexes exhibit another absorption

band at higher photon energies than the preceding Emax values. It is also

possible that the Emax energies are too low by a few tenths of electronvolt

because of the uncertainty in the resolution of the absorption spectrum by

superposed multiple Gaussians.

The two emission bands of Mn(CN) 4- in [11) are not as well resolved

as for Fe(CN)4- [10], but they are still apparent. The second band of
4

Mn(CN)4- has a threshold energy of ca. 6 eV and a normal value R ;c-1.7 eV.

More exact analysis is not feasible because of the possibility of spurious

emission by Mn(CN) 3- for the easily oxidized (by air) solutions of
A6

Mn(CN) -. The emission spectra of the other complexes of Table 1 were not

investigated in [11] at sufficiently high photon energies (up to ca. 8 eV) to

allow the detection of their normal emission bands by the extrapolation method

of sec. 4.

4. Inorganic anions and cations

Definite evidence for autoionization was found for NO- and ClO among

the common inorganic anions investigated in [17]. The reorganization free

energy of NO3 in aqueous solution is anomalously low in absolute value:

Et W 7.46 eV [17], AG - 2.3*-0.1 eV [18], R =-0.7 eV from (1). A second

emission band therefore is expected at photon energies corresponding to the
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normal value of R. The plot of the emission yield Y to the power 0.5 against

photon energy (sec. 2, [5]) does exhibit a break at ca. 9.2 eV for the data

1 obtained in [17]. The threshold energies from the two linear segments (7.9 to

9.1 eV and 9.3 to 10.3 eV) of the extrapolation plot are 7.66 and 8.38 eV,
respectively. Extrapolation from a plot of Y. 4 rather than Y 5 generally

yields better fits for Et < 8 eV [6,7,17] (cf. discussion in [5]). The

resulting first threshold energy is 7.47 eV in good agreement with Et  7.46 eV

in [17]. The value R = -1.6 eV computed from (1) for Et = 8.38 eV is normal in

contrast with the anomalous value, R = -0.7 eV, for the autoionization band. It

should be noted that extrapolation plots of yO. 4 or yO.5 against photon

energy can yield only an approximate threshold energy of the autoionization

band. These plots presuppose a constant product of the emission cross section by

the attenuation length of the electron wave in the liquid (cf. discussion in

[5]). This can hardly be the case for autoionization bands which have the

Gaussian-like shape of absorption bands [4,10].

The change of free energy aG is not available for application of (1) to

emission by Cl04. The reorganization free energy R can be computed in that

case from,

Et . A- aGs - R, (3)

where.A is the electron affinity of the C1O 4 radical and aGs the free energy

of solvation of C10 4. Equation (3) involves minor approximations which are

stated in its derivation in [5]. One computes aGS = -2.25 eV for ClO-
.44

from data in [19,20]. One has: Et - 8.45 eV for ClO 4 [17), A = 5.82 eV
44

[21], and the anomalous value R - -0.38 eV. Thus, the band at Et = 8.45 eV is

assigned to autoionization. The validity of this assignment rests, of course, on

the corrections of the numerical value of A. A normal value of R would require A

to be lower by ca. 1 eV than the value used here.

._______________* -,

*.k'..s |.
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The cations Ag+ and Tl among those studied in [6] have anomalous

reorganization free energies: Et = 7.52 eV, aG = 2.0 eV [12], R z -1.0 eV for

Ag ; Et = 7.40 eV, aG = 2.2 eV [22], R z -0.7 eV for Ti . The anomalous

character of these values of R can be ascertained from the ratio p = z2R/AG s ,

where AG is the free energy of solvation of the ion having the ionic charge z4

or z-. A numerical value of p is obtained from (2) and the Born equation for

AGs by neglecting the inner-sphere contribution to R. Thus,

(-1 s)/(1 - 1) (4)
p -( op - 1 - S )

The term z2 appears in the ratio z2R/AGs because AGS is proportional to

z2 according to the Born equation whereas R(out) of (2) is independent of z.

Equation (3) is based on a crude model but it yields the value, p = 0.56, for

aqueous solutions at room temperature in fair agreement with experiment (Table

2), namely 0.42 .< z2R/AGs < 0.53. It should be noted that the values of

AGs used in the calculation of p and the quantity AGH in (1) are not

independent, as one can ascertain from appropriate thermodynamic cycles. The

value of p therefore depends somewhat on the choice of the numerical value of

aGH in (1). This dependence is not significant for our present purpose because

-

+

the values of p for Ag (p = 1.0/4.96 = 0.20) and Tl (p = 0.7/3.56 = 0.20)

are clearly too low (AGs values from [23]).

Reexamination of the results in [6] for TIF yielded a YO.5 extrapolation

plot (from 9.2 to 10.3 eV) and Et = 8.26 eV for the normal emission band of

T + . The corresponding value R x -1.6 eV computed for AG = 2.2 eV [22] is

* normal whereas the value R a -0.7 eV for the autoionization band is anomalous.

The threshold energy for the second band of Ag4 could not be determined because

of emission by the anion (CI04, Et = 8.45 eV [17]) in the range of photon

* energies in which this band occurs and is expected.
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5. Correlation with thermal electron transfer

The activation free energy aG for thermal electron transfer in solution
x

can be correlated [14] to the reorganization free energy R for emission on the

basis of the theories [1] of Marcus [8] and Hush [9]. One has &Gx = w + R /4
x x

in the case in which the change of free energy is equal to zero (isotope

labeling). There, w is the work required to bring the two reactants from

infinity in solution to the activated complex, and Rx is the reorganization

free energy for thermal electron exchange. The latter is [14] Rx - R + R(in),

where R has its normal value.

Unwitting use of anomalous values of R leads to &G's which are too
x

low. This was the case in [14] for Fe(CN)4 . Using R = -0.6 eV (Table 1),

R(in) = -0.38 eV [13], w = 0.04 eV [14], one computes aGx = 0.29 eV against

0.47 eV from experiment. The value aGx = 0.56 eV computed from the normalx
value R = -1.7 eV is closer to the experimental result.
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Table 1

Data on cyanometalate complexes

Et a) AG b) -R

(eV) (eV) (eV)

Mn(CN)4 -  ca. 4.8 -0.22 ca. 0.5

ca. 6 ca. 1.7

Fe(CN) 4-  5.5 0.36 0.6

ca. 6.6 ca. 1.7

Fe(CN )5NH 3 5.4 0.37 0.5

Fe(CN )5H203- 5.4 0.49 0.4

W(CN) 4 5.4 0.57 0.3

Mo(CN)4- 5.6 0.73 0.4

a)Extrapolation plots prepared from data in [11]. Et = 6.6 eV for

Fe(CN)4 from 1.1 eV interval between emission bands in [10].

b)From [12].



Table 2

Correlation between reorganization and solvation free energies

Et a) &G b) -R _aGsc) z2RIaG s

(eV) (eV) (eV) (eV)

OH 8.45 1.9 2.05 4.2 0.49

Cl- 8.81 2.55 1.76 3.30 0.53

Br- 8.05 2.0 1.55 3.00 0.52

1- 7.19 1.4 1.29 2.61 0.49

V2+  6.38 -0.25 2.13 19.12 0.45

Cr2+  6.14 -0.41 2.05 19.28 0.43

Mn2+  8.08 1.56 2.02 18.92 0.43

Fe2+  7M5 0.77 2.08 19.58 0.42

Co2+  8.60 1.84 2.26 20.85 0.43

a)From [6,7].

b)From [12,18].

C)From [23] except for OH- [7].

L
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Captions to Figures

Fig. 1. Potential energy against generalized coordinate for nuclear

configuration in the cases of direct optical transition to the continuum

(left) and autoionlzation (right).

Fig. 2. Plots of the emission yield Y to the powers 0.4 (top) and 0.5

(bottom) against photon energy for 1 M NaNO3 (data from [17]).
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